Elektronika.lt

Elektronika.lt - elektronikos, informacinių ir
ryšių technologijų portalas

Adresas: http://www.elektronika.lt
El. paštas: info@elektronika.lt
 Atspausdinta iš: http://www.elektronika.lt/teorija/komponentai/1720/kondensatoriai/spausdinti/

Kondensatoriai

Publikuota: 2005-07-31 15:43
Tematika: Elektronikos komponentai
Skirta: Pradedantiems
Autorius: el. paštas Prof. A. A. Bielskis
Aut. teisės: el. paštas ©Prof. A. A. Bielskis
Inf. šaltinis: el. paštas KU Informatikos katedra

Dviejų laidininkų (plokštelių), atskirtų dielektriku, sistema sudaro elektrinį kondensatorių. Kondensatorių konstrukcija, paskirtis, tipai, jungimas, įkrovimas ir iškrovimas, charakteristikos.


Dviejų laidininkų (plokštelių), atskirtų dielektriku, sistema sudaro elektrinį kondensatorių.

Natūralūs kondensatoriai yra, pavyzdžiui, du elektros tinklo laidai, dvi kabelio gyslos, kabelio gysla ir šarvas, perėjimo izoliatorius (izoliuojantis laidą nuo sienos arba metalinio korpuso sienelės). Naudojami įvairių konstrukcijų kondensatoriai, gana dažnai – plokštieji, kuriuos sudaro dvi lygiagrečios metalinės, izoliuotos viena nuo kitos plokštelės.

Sutartinai grafiniai kondensatorių žymėjimai yra:

Kondensatoriai kaupia ir išlaiko savo plokštelėse vienodo didumo ir priešingų ženklų elektros krūvius. Kiekvienos kondensatoriaus plokštelės elektros krūvis Q proporcingas įtampai U tarp plokštelių, taigi:

Q = CU.

Dydis C, lygus vienos kondensatoriaus plokštelės krūvio ir įtampos tarp plokštelių santykiui, vadinamas kondensatoriaus elektrine talpa ir yra vienas iš jo parametrų. Vadinasi, talpa:

C = Q/U.

Kadangi SI sistemoje krūvio vienetas yra kulonas, o įtampos vienetas – voltas, tai talpos vienetas yra kulonas, padalintas iš volto. Jis vadinamas faradu (F):

1 F = 1 C/1 V.

Paprastai vartojami smulkesni vienetai – mikrofaradas (1 µF = 10-6 F) arba pikofaradas (1 pF = 10-12 F).

Kondensatoriaus talpa priklauso nuo jo plokštelių – elektrodų – formos ir matmenų, jų tarpusavio padėties, taip pat nuo dielektriko, skiriančio tas plokšteles, savybių.

Pavyzdžiui, plokščiojo kondensatoriaus, tarp kurio plokštelių yra vakuumas, talpa:

C = ε0S/d;

Čia S – vienos plokštelės plotas, m2, d – atstumas tarp plokštelių, m, ε0 – elektrinė konstanta, nusakanti elektrinį lauką tuštumoje (vakuume).

Elektrinės konstantos matavimo vienetas randamas šitaip:

0] = [Cd/S] = Fm/m2 = F/m.

Vadinasi, elektrinė konstanta išreiškiama faradais metrui.

Elektrinė konstanta priklauso nuo vienetų sistemos. Jos vertė SI vienetų sistemoje šitokia:

Įvairių medžiagų dielektrines savybes galima palyginti su vakuumo savybėmis.

Erdvę tarp kondensatoriaus plokštelių užpildžius kokia nors medžiaga – dielektriku, kondensatoriaus talpa padidės ε kartų. Tuomet ją bus galima rasti iš formulės:

C = ε0εS/d = eaS/d.

Daugiklis ε, vadinamas medžiagos santykine dielektrine skvarba, yra bematis dydis. Kai kurių dielektrikų santykinės dielektrinės skvarbos vertės pateikiamos lentelėse.

Santykinės dielektrinės skvarbos ir elektrinės konstantos sandauga vadinama absoliutine dielektrine skvarba:

εa = εε0.

Pramonė išleidžia įvairios konstrukcijos bei paskirties, įvairios talpos (1 pF – 1000 µF) kondensatorius iki 10 kV vardinės įtampos.

Kintamosios srovės grandinėse naudojami popieriniai , žėrutiniai, keraminiai kondensatoriai , o elektrolitiniai kondensatoriai naudojami tiktai nuolatinės srovės grandinėse.

Popierinį kondensatorių sudaro dvi ilgos aliuminio folijos juostos, izoliuotos parafinuoto popieriaus juostomis.

Elektrolitinio kondensatoriaus viena plokštelė yra aliuminio folija, o kita – popierius ar audinys, impregnuotas tirštu elektrolito tirpalu; dielektrikas – labai plonas oksido sluoksnis ant aliuminio folijos.

Kondensatorių jungimas

Norint gauti tam tikrą talpą arba kai tinklo įtampa viršija vardinę kondensatoriaus įtampą, keli kondensatoriai jungiami nuosekliai, lygiagrečiai arba mišriai.

Sujungus kondensatorius nuosekliai, visų kondensatorių elektrodų krūviai bus vienodi, nes iš maitinimo šaltinio jie patenka tik į išorinius elektrodus, o vidiniuose elektroduose jie gaunami tik pasiskirsčius krūviams, anksčiau neutralizavusiems vieniems kitus.

Vieno kondensatoriaus elektrodo krūvį pažymėjus Q, dviem nuosekliai sujungtiems kondensatoriams galima parašyti:

U1 = Q/C1 ir U2 = Q/C2,

T. y., esant nevienodoms talpoms, kondensatorių įtampos bus skirtingos.

Išreiškę įtampą grandinės gnybtuose

U = U1 + U2

Krūvių ir talpų santykiu, gauname:

Q/C = Q/C1 + Q/C2

arba, suprastinus iš Q,

1/C = 1/C1 + 1/ C2

iš čia bendroji, arba ekvivalentinė, dviejų nuosekliai sujungtų kondensatorių talpa

C = C1C2/C1 + C2.

Lygiagrečiai sujungus kondensatorius, visų kondensatorių įtampos bus vienodos, o krūviai bendru atveju bus skirtingi:

Q1 = C1U ir Q2 = C2U.

Visų lygiagrečiai sujungtų kondensatorių bendras krūvis yra lygus atskirų kondensatorių krūvių sumai, t. y. Dviejų lygiagrečiai sujungtų kondensatorių krūvis

Q = Q1 + Q2;

iš čia bendroji, arba ekvivalentinė, talpa

C = Q/U = (Q1 + Q2)/U = C1 + C2,

t. y. ekvivalentinė talpa lygi atskirų kondensatorių talpų sumai.

Jei nuosekliai ar lygiagrečiai sujungta daugiau kondensatorių, pasinaudojus formulėmis, nesunkiai galima rasti ekvivalentines talpas.

Kondensatoriaus įkrovimas ir iškrovimas

a) kondensatoriaus įkrovimas.

Išnagrinėkime grandinę, sudarytą iš neįkrauto C talpos kondensatoriaus ir varžos rezistoriaus, prijungtų prie nuolatinės įtampos U maitinimo šaltinio.

Kadangi įjungimo momentu kondensatorius dar neįkrautas, tai jo įtampa uc = 0. Todėl pradiniu laiko momentu (t = 0) įtampos kritimas rezistoriuje R lygus U, ir atsiranda srovė, kurios stiprumas:

i = U/R = I.

Tekant srovei i, kondensatoriuje palaipsniui kaupiasi krūvis Q, ir jame atsiranda įtampa uc = Q/C, o įtampos kritimas rezistoriuje R, pagal antrąjį Kirchhofo dėsnį, mažėja:

iR = U – uc.

Vadinasi, srovė:

i = (U – uc)/R

mažėja, mažėja ir krūvio kaupimosi greitis, nes grandine tekanti srovė:

i = dQ/dt.

Laikui bėgant, krūvis Q ir įtampa uc didėja vis lėčiau, o srovė grandinėje palaipsniui mažėja proporcingai skirtumui U – uc.

Per pakankamai ilgą laiką (teoriškai per be galo ilgą laiką) įtampa kondensatoriuje pasiekia maitinimo šaltinio įtampą, srovė pasidaro lygi nuliui, ir kondensatoriaus įkrovimo procesas pasibaigia.

Praktiškai susitarta laikyti, jog kondensatoriaus įkrovimas baigtas, kai srovė sumažėja iki 1 % nuo pradinės vertės U/R, arba kondensatoriaus įtampa pasiekia 99 % maitinimo šaltinio įtampos U.

Kondensatoriaus įkrovimas vyksta juo lėčiau, juo didesnė srovę ribojanti grandinės varža R ir juo didesnė kondensatoriaus talpa C, nes, esant didesnei talpai, reikia sukaupti didesnį krūvį. Proceso greitis apibūdinamas grandinės laiko konstanta:

t = RC;

juo didesnė t, tuo lėtesnis procesas.

Grandinės laiko konstanta turi laiko dimensiją, nes

Įjungus grandinę, per laiką, lygų t, kondensatoriaus įtampa pasiekia maždaug 63 % nuo maitinimo šaltinio įtampos, o per 5 t laiką, kondensatoriaus įkrovimo procesą galima laikyti baigtu.

Įkraunant kondensatorių, jo įtampa:

t. y. ji lygi maitinimo šaltinio nuolatinės įtampos ir laisvosios įtampos

kuri, laikui bėgant, mažėja rodiklinės funkcijos (eksponentės) dėsniu nuo U iki nulio.

Srovė ic rodiklinės funkcijos dėsniu mažėja nuo pradinės vertės I = U/R.

b) kondensatoriaus iškrovimas.

Dabar išnagrinėkime kondensatoriaus C, kuris buvo įkrautas iš maitinimo šaltinio iki įtampos U, iškrovimo per rezistorių R procesą. Pradiniu momentu grandinėje atsiranda srovė i = U/R = I, kondensatorius pradeda mažėti. Įtampai uc mažėjant, mažėja ir srovė grandinėje i = uc/R. Per laiką 5t = 5RC, kondensatoriaus įtampa ir srovė grandinėje sumažėja maždaug iki 1 % nuo pradinių verčių, ir kondensatoriaus iškrovimo procesą galima laikyti baigtu.

Kondensatoriui išsikraunant, jo įtampa lygi:

t. y. ji mažėja rodiklinės funkcijos dėsniu.

Kondensatoriaus iškrovimo srovė

t. y. ji mažėja tuo pačiu dėsniu, kaip ir įtampa.

Visa įkrovimo metu kondensatoriaus elektriniame lauke sukaupta energija iškrovimo metu išsiskiria kaip šiluma rezistoriuje R.

Atjungus nuo maitinimo šaltinio įkrautą kondensatorių, jo elektrinis laukas negali ilgai išlikti nepakitęs, nes kondensatoriaus dielektrikas ir izoliacija tarp jo gnybtų turi tam tikrą laidumą.

Kondensatoriaus iškrovimas, kuris vyksta dėl blogo dielektriko ir izoliacijos, vadinamas saviiškrova. Kondensatoriaus saviiškrovos laiko konstanta t nepriklauso nuo plokštelių formos ir atstumo tarp jų.

Kondensatoriaus įkrovimo ir iškrovimo procesai vadinami perėjimo procesais.

Kondensatorių rūšys

1. Vakuuminiai pastovios talpos kondensatoriai

Tokio tipo kondensatoriai naudojami darbui su kintamos ir pastovios srovės grandinėmis.

Bendra techninė charakteristika:

  1. Leidžiami talpos didumo nukrypimai yra +(-)5; +(-)10; +(-)20 %;
  2. Kondensatoriaus patvarumas – 2000 val.;
  3. Kondensatoriaus laikymas sandėlių sąlygomis – 12 metų;
  4. Baigiantis galiojimui talpos pakeitimas virš nustatyto leidžiamo nukrypimo ne daugiau +(-)20 %.

2. Pastovios talpos kondensatoriai su organiniu sintetiniu dielektriku

Tokio tipo kondensatoriai naudojami nuslopinti radijo ryšio trukdžiams.

Bendra techninė charakteristika:

  1. Leidžiami talpos didumo nukrypimai yra +100 % ir –10 %;
  2. Leidžiami talpos pakeitimai kraštutinėmis sąlygomis dirbamoje temperatūroje atžvilgiu išmatuotos normaliomis sąlygomis yra +(-)10 %;
  3. Kintamos talpos bandomosios įtampos dažnumas – 1000;
  4. Izoliacijos pasipriešinimas tarp išvedimų:
    normaliomis sąlygomis ne mažiau 10000 MΩ;
    esant +125 °C temperatūrai ne mažiau 500 MΩ.
  5. Garantinis kondensatoriaus galiojimo laikas 500 val.;
  6. Garantinis saugojimo laikas 8,5 metai;
  7. Baigiantis laikymo laikotarpiui izoliacijos pasipriešinimas ne mažiau 5000 MΩ.

3. Kombinuoti kondensatoriai

Šio tipo kondensatoriai su įtampos nukrypimais nuo 3 iki 20 kV naudojami darbui pastovios ir pulsuojančios srovės grandinėse. Priklausomai nuo kondensatoriaus konstrukcijos korpuso kondensatoriai gaminami keraminiuose cilindriniuose korpusuose.

Bendra techninė charakteristika:

  1. Talpos didumo leidžiami nukrypimai - +(-)5; +(-)10; +(-)20 %;
  2. Leidžiami talpos pakeitimai kraštutinėmis sąlygomis dirbamoje temperatūroje atžvilgiu išmatuotos normaliomis sąlygomis yra +(-)10 %;
  3. Izoliacijos pasipriešinimas +20 °C temperatūroje:
    tarp sujungtų kartu išvedimų ir korpuso ne mažiau 5000 MΩ;
    tarp išvedimų, dėl kondensatoriaus nukrypimų:
    iki 0,1 µF ne daugiau 10000 MΩ;
    0,2 µF ir virš ne daugiau 200 MΩ• µF.
  4. Garantinis kondensatoriaus galiojimo laikas +70 °C temperatūroje – 5000 val.;
  5. Garantinis laikymo sandėliuose laikas – 12 metų;
  6. Baigiantis galiojimo laikui:
    talpos pakeitimas virš nustatytų nukrypimų ne daugiau +(-)10 %;
    izoliacijos pasipriešinimas ne mažiau 50 %

4. Vakuuminiai (polikarbonatiniai) kondensatoriai

Šio tipo kondensatoriai su įtampos nukrypimais nuo 63 iki 400 V naudojami darbui pastoviose, kintamose ir pulsuojančiose grandinėse. Šie kondensatoriai gaminami darbui sauso ir drėgno klimato sąlygomis.

5. Vakuuminiai kintamos talpos kondensatoriai

Tokio tipo kondensatoriai gaminami nominalios įtampos 25 kV ir naudojami darbui pastovios ir kintamos srovės, dažniu iki 60 МHz, grandinėse.

Bendra techninė charakteristika:

  1. Leidžiami talpos didumo nukrypimai pagal nominalią vertę:
    minimali talpa +10 %;
    maksimali talpa –10 %.
  2. Talpos temperatūrinis koeficientas 1 °C temperatūros intervale nuo –60 iki +125 °C, priklausomai nuo drėgnumo iki 80 %, yra +30 (+(-)10)•10-6 .
  3. Bandomoji įtampa pastovios ar kintamos srovės, dažniu 50 Hz, yra 30 kV.
  4. Izoliacijos pasipriešinimas normaliomis sąlygomis ne mažiau 10000 GΩ.
  5. Sukimosi momentas ne daugiau 0,05 kHz•m
  6. Leidžiamas pertvarkymų skaičius nuo minimalios iki maksimalios talpos ir atvirkščiai ne daugiau 2000.
  7. Pilnų talpos pertvarkymų ciklų per minutę skaičius ne daugiau 5.
  8. Ilgaamžiškumas – 1000 val.
  9. Garantinis kondensatoriaus laikymas 5 metai.

6. Kondensatoriai su oro dielektrikais

Jie naudojami darbui pastovios ir kintamos srovės grandinėse.

Bendra techninė charakteristika:

  1. Pastovios srovės leidžiama darbinė įtampa 160 V.
  2. Talpos temperatūrinis koeficientas 1° C temperatūros intervale nuo –60 iki +125 °C, priklausomai nuo drėgnumo iki 80 %, yra ne daugiau +300 • 10-6
  3. Pastovios srovės bandomoji įtampa 500V.
  4. Izoliacijos pasipriešinimas:
    normaliomis sąlygomis ne mažiau 1000 MΩ;
    kai temperatūra +125 °C ne mažiau 500 MΩ.
  5. Sukimosi momentas nuo 60 iki 400 Hz•cm.
  6. Pilnas sukimosi kampas 360°.
  7. Kondensatoriaus ilgaamžiškumas veikiant 160 V įtampai – 5000 val.
  8. Kondensatoriaus laikymas sandėliuose 12 metų.

Daugiau ar mažiau panašūs yra šie kondensatorių tipai: kondensatoriai su kietais dielektrikais, kondensatoriai su žėrutiniais dielektrikais, kondensatoriai su popieriniu dielektriku, kondensatoriai su dielektriku iš oksidinio sluoksnio ant ventilinio metalo ir t. t.

Dažniausiai naudojamas kondensatorių žymėjimas: K61-3;KT-2 ir t. t.

Literatūra

  1. V. Popovas, S. Nikolajevas „Bendroji elektrotechnika ir elektronikos pagrindai“.
  2. МИНИСТЕРСТВО ЭЛЕКТРОННОЙ ПРОМЫШЛЕННОСТИ СССР, „КОНДЕНСАТОРЫ“ – СПРАВОЧНИК, 1977.
‡ 1999–2024 © Elektronika.lt LTV.LT - lietuviškų tinklalapių vitrina Valid XHTML 1.0!